Crash of a Boeing 737-210C in Resolute Bay: 12 killed

Date & Time: Aug 20, 2011 at 1142 LT
Type of aircraft:
Operator:
Registration:
C-GNWN
Survivors:
Yes
Schedule:
Yellowknife - Resolute Bay - Grise Fiord
MSN:
21067/414
YOM:
1975
Flight number:
FAB6550
Country:
Crew on board:
4
Crew fatalities:
Pax on board:
11
Pax fatalities:
Other fatalities:
Total fatalities:
12
Captain / Total flying hours:
12910
Captain / Total hours on type:
5200.00
Copilot / Total flying hours:
4848
Copilot / Total hours on type:
103
Aircraft flight hours:
86190
Circumstances:
The First Air Boeing 737-210C combi aircraft departed Yellowknife (CYZF), Northwest Territories, at 1440 as First Air flight 6560 (FAB6560) on a charter flight to Resolute Bay (CYRB), Nunavut, with 11 passengers, 4 crew members, and freight on board. The instrument flight rules (IFR) flight from CYZF was flight-planned to take 2 hours and 05 minutes at 426 knots true airspeed and a cruise altitude of flight level (FL) 310. Air traffic control (ATC) cleared FAB6560 to destination via the flight-planned route: CYZF direct to the BOTER intersection, then direct to the Cambridge Bay (CB) non-directional beacon (NDB), then direct to 72° N, 100°45' W, and then direct to CYRB (Figure 1). The planned alternate airport was Hall Beach (CYUX), Nunavut. The estimated time of arrival (ETA) at CYRB was 1645. The captain occupied the left seat and was designated as the pilot flying (PF). The first officer (FO) occupied the right seat and was designated as the pilot not flying (PNF). Before departure, First Air dispatch provided the crew with an operational flight plan (OFP) that included forecast and observed weather information for CYZF, CYRB, and CYUX, as well as NOTAM (notice to airmen) information. Radar data show that FAB6560 entered the Northern Domestic Airspace (NDA) 50 nautical miles (nm) northeast of CYZF, approximately at RIBUN waypoint (63°11.4' N, 113°32.9' W) at 1450. During the climb and after leveling at FL310, the crew received CYRB weather updates from a company dispatcher (Appendix A). The crew and dispatcher discussed deteriorating weather conditions at CYRB and whether the flight should return to CYZF, proceed to the alternate CYUX, or continue to CYRB. The crew and dispatcher jointly agreed that the flight would continue to CYRB. At 1616, the crew programmed the global positioning systems (GPS) to proceed from their current en-route position direct to the MUSAT intermediate waypoint on the RNAV (GNSS) Runway (RWY) 35 TRUE approach at CYRB (Appendix B), which had previously been loaded into the GPS units by the crew. The crew were planning to transition to an ILS/DME RWY 35 TRUE approach (Appendix C) via the MUSAT waypoint. A temporary military terminal control area (MTCA) had been planned, in order to support an increase in air traffic at CYRB resulting from a military exercise, Operation NANOOK. A military terminal control unit at CYRB was to handle airspace from 700 feet above ground level (agl) up to FL200 within 80 nm of CYRB. Commencing at 1622:16, the FO made 3 transmissions before establishing contact with the NAV CANADA Edmonton Area Control Centre (ACC) controller. At 1623:29, the NAV CANADA Edmonton ACC controller cleared FAB6560 to descend out of controlled airspace and to advise when leaving FL270. The crew were also advised to anticipate calling the CYRB terminal control unit after leaving FL270, and that there would be a layer of uncontrolled airspace between FL270 and FL200. The FO acknowledged the information. FAB6560 commenced descent from FL310 at 1623:40 at 101 nm from CYRB. The crew initiated the pre-descent checklist at 1624 and completed it at 1625. At 1626, the crew advised the NAV CANADA Edmonton ACC controller that they were leaving FL260. At 1627:09, the FO subsequently called the CYRB terminal controller and provided an ETA of 1643 and communicated intentions to conduct a Runway 35 approach. Radio readability between FAB6560 and the CYRB terminal controller was poor, and the CYRB terminal controller advised the crew to try again when a few miles closer. At 1629, the crew contacted the First Air agent at CYRB on the company frequency. The crew advised the agent of their estimated arrival time and fuel request. The crew then contacted the CYRB terminal controller again, and were advised that communications were now better. The CYRB terminal controller advised that the MTCA was not yet operational, and provided the altimeter setting and traffic information for another inbound flight. The CYRB terminal controller then instructed the crew to contact the CYRB tower controller at their discretion. The FO acknowledged the traffic and the instruction to contact CYRB tower. At 1631, the crew contacted the CYRB tower controller, who advised them of the altimeter setting (29.81 inches of mercury [in. Hg]) and winds (estimated 160° true [T] at 10 knots), and instructed them to report 10 nm final for Runway 35T. The crew asked the tower controller for a runway condition report, and was advised that the runway was a little wet and that no aircraft had used it during the morning. The FO acknowledged this information. The crew initiated the in-range checklist at 1632 and completed it at 1637. At 1637, they began configuring the aircraft for approach and landing, and initiated the landing checklist. At 1638:21, FAB6560 commenced a left turn just before reaching MUSAT waypoint. At the time of the turn, the aircraft was about 600 feet above the ILS glideslope at 184 knots indicated airspeed (KIAS). The track from MUSAT waypoint to the threshold of Runway 35T is 347°T, which coincides with the localizer track for the ILS/DME RWY 35 TRUE approach. After rolling out of the left turn, FAB6560 proceeded on a track of approximately 350°T. At 1638:32, the crew reported 10 nm final for Runway 35T. The captain called for the gear to be lowered at 1638:38 and for flaps 15 at 1638:42. Airspeed at the time of both of these calls was 177 KIAS. At 1638:39, the CYRB tower controller acknowledged the crew’s report and instructed them to report 3 nm final. At 1638:46, the FO requested that the tower repeat the last transmission. At 1638:49, the tower repeated the request to call 3 nm final; the FO acknowledged the call. At this point in the approach, the crew had a lengthy discussion about aircraft navigation. At 1640:36, FAB6560 descended through 1000 feet above field elevation. Between 1640:41 and 1641:11, the captain issued instructions to complete the configuration for landing, and the FO made several statements regarding aircraft navigation and corrective action. At 1641:30, the crew reported 3 nm final for Runway 35T. The CYRB tower controller advised that the wind was now estimated to be 150°T at 7 knots, cleared FAB6560 to land Runway 35T, and added the term “check gear down” as required by the NAV CANADA Air Traffic Control Manual of Operations (ATC MANOPS) Canadian Forces Supplement (CF ATC Sup) Article 344.3. FAB6560’s response to the tower (1641:39) was cut off, and the tower requested the crew to say again. There was no further communication with the flight. The tower controller did not have visual contact with FAB6560 at any time. At 1641:51.8, as the crew were initiating a go-around, FAB6560 collided with terrain about 1 nm east of the midpoint of the CYRB runway. The accident occurred during daylight hours and was located at 74°42'57.3" N, 94°55'4.0" W, at 396 feet above mean sea level. The 4 crew members and 8 passengers were fatally injured. Three passengers survived the accident and were rescued from the site by Canadian military personnel, who were in CYRB participating in Operation NANOOK. The survivors were subsequently evacuated from CYRB on a Canadian Forces CC-177 aircraft.
Probable cause:
Findings as to causes and contributing factors:
1. The late initiation and subsequent management of the descent resulted in the aircraft turning onto final approach 600 feet above the glideslope, increasing the crew’s workload and reducing their capacity to assess and resolve the navigational issues during the remainder of the approach.
2. When the heading reference from the compass systems was set during initial descent, there was an error of −8°. For undetermined reasons, further compass drift during the arrival and approach resulted in compass errors of at least −17° on final approach.
3. As the aircraft rolled out of the turn onto final approach to the right of the localizer, the captain likely made a control wheel roll input that caused the autopilot to revert from VOR/LOC capture to MAN and HDG HOLD mode. The mode change was not detected by the crew.
4. On rolling out of the turn, the captain’s horizontal situation indicator displayed a heading of 330°, providing a perceived initial intercept angle of 17° to the inbound localizer track of 347°. However, due to the compass error, the aircraft’s true heading was 346°. With 3° of wind drift to the right, the aircraft diverged further right of the localizer.
5. The crew’s workload increased as they attempted to understand and resolve the ambiguity of the track divergence, which was incongruent with the perceived intercept angle and expected results.
6. Undetected by the pilots, the flight directors likely reverted to AUTO APP intercept mode as the aircraft passed through 2.5° right of the localizer, providing roll guidance to the selected heading (wings-level command) rather than to the localizer (left-turn command).
7. A divergence in mental models degraded the crew’s ability to resolve the navigational issues. The wings-level command on the flight director likely assured the captain that the intercept angle was sufficient to return the aircraft to the selected course; however, the first officer likely put more weight on the positional information of the track bar and GPS.
8. The crew’s attention was devoted to solving the navigational problem, which delayed the configuration of the aircraft for landing. This problem solving was an additional task, not normally associated with this critical phase of flight, which escalated the workload.
9. The first officer indicated to the captain that they had full localizer deflection. In the absence of standard phraseology applicable to his current situation, he had to improvise the go-around suggestion. Although full deflection is an undesired aircraft state requiring a go-around, the captain continued the approach.
10. The crew did not maintain a shared situational awareness. As the approach continued, the pilots did not effectively communicate their respective perception, understanding, and future projection of the aircraft state.
11. Although the company had a policy that required an immediate go-around in the event that an approach was unstable below 1000 feet above field elevation, no go-around was initiated. This policy had not been operationalized with any procedural guidance in the standard operating procedures.
12. The captain did not interpret the first officer’s statement of “3 mile and not configured” as guidance to initiate a go-around. The captain continued the approach and called for additional steps to configure the aircraft.
13. The first officer was task-saturated, and he thus had less time and cognitive capacity to develop and execute a communication strategy that would result in the captain changing his course of action.
14. Due to attentional narrowing and task saturation, the captain likely did not have a high- level overview of the situation. This lack of overview compromised his ability to identify and manage risk.
15. The crew initiated a go-around after the ground proximity warning system “sink rate” alert occurred, but there was insufficient altitude and time to execute the manoeuvre and avoid collision with terrain.
16. The first officer made many attempts to communicate his concerns and suggest a go-around. Outside of the two-communication rule, there was no guidance provided to address a situation in which the pilot flying is responsive but is not changing an unsafe course of action. In the absence of clear policies or procedures allowing a first officer to escalate from an advisory role to taking control, this first officer likely felt inhibited from doing so.
17. The crew’s crew resource management was ineffective. First Air’s initial and recurrent crew resource management training did not provide the crew with sufficient practical strategies to assist with decision making and problem solving, communication, and workload management.
18. Standard operating procedure adaptations on FAB6560 resulted in ineffective crew communication, escalated workload leading to task saturation, and breakdown in shared situational awareness. First Air’s supervisory activities did not detect the standard operating procedure adaptations within the Yellowknife B737 crew base.

Findings as to risk:
1. If standard operating procedures do not include specific guidance regarding where and how the transition from en route to final approach navigation occurs, pilots will adopt non-standard practices, which may introduce a hazard to safe completion of the approach.
2. Adaptations of standard operating procedures can impair shared situational awareness and crew resource management effectiveness.
3. Without policies and procedures clearly authorizing escalation of intervention to the point of taking aircraft control, some first officers may feel inhibited from doing so.
4. If hazardous situations are not reported, they are unlikely to be identified or investigated by a company’s safety management system; consequently, corrective action may not be taken.
5. Current Transport Canada crew resource management training standards and guidance material have not been updated to reflect advances in crew resource management training, and there is no requirement for accreditation of crew resource management facilitators/instructors in Canada. This situation increases the risk that flight crews will not receive effective crew resource management training.
6. If initial crew resource management training does not develop effective crew resource management skills, and if there is inadequate reinforcement of these skills during recurrent training, flight crews may not adequately manage risk on the flight deck.
7. If operators do not take steps to ensure that flight crews routinely apply effective crew resource management practices during flight operations, risk to aviation safety will persist.
8. Transport Canada’s flight data recorder maintenance guidance (CAR Standard 625, Appendix C) does not refer to the current flight recorder maintenance specification, and therefore provides insufficient guidance to ensure the serviceability of flight data recorders. This insufficiency increases the risk that information needed to identify and communicate safety deficiencies will not be available.
9. If aircraft are not equipped with newer-generation terrain awareness and warning systems, there is a risk that a warning will not alert crews in time to avoid terrain.
10. If air carriers do not monitor flight data to identify and correct problems, there is a risk that adaptations of standard operating procedures will not be detected.
11. Unless further action is taken to reduce the incidence of unstable approaches that continue to a landing, the risk of controlled flight into terrain and of approach and landing accidents will persist.

Other findings:
1. It is likely that both pilots switched from GPS to VHF NAV during the final portion of the in-range check before the turn at MUSAT.
2. The flight crew of FAB6560 were not navigating using the YRB VOR or intentionally tracking toward the VOR.
3. There was no interference with the normal functionality of the instrument landing system for Runway 35T at CYRB.
4. Neither the military tower nor the military terminal controller at CYRB had sufficient valid information available to cause them to issue a position advisory to FAB6560.
5. The temporary Class D control zone established by the military at CYRB was operating without any capability to provide instrument flight rules separation.
6. The delay in notification of the joint rescue coordination centre did not delay the emergency response to the crash site.
7. The NOTAMs issued concerning the establishment of the military terminal control area did not succeed in communicating the information needed by the airspace users.
8. The ceiling at the airport at the time of the accident could not be determined. The visibility at the airport at the time of the accident likely did not decrease below approach minimums at any time during the arrival of FAB6560. The cloud layer at the crash site was surface-based less than 200 feet above the airport elevation.
Final Report:

Crash of a Convair CV-580 in Kasba Lake

Date & Time: Aug 3, 2011 at 1100 LT
Type of aircraft:
Operator:
Registration:
C-GKFP
Survivors:
Yes
Schedule:
Winnipeg – Kasba Lake
MSN:
446
YOM:
1956
Country:
Crew on board:
0
Crew fatalities:
Pax on board:
0
Pax fatalities:
Other fatalities:
Total fatalities:
0
Circumstances:
Following an uneventful flight from Winnipeg, the crew completed the landing on runway 02/20, a 1,876 metres long clay/gravel runway. During the landing roll, the nose gear collapsed. The aircraft slid on its nose for few dozen metres before coming to rest. All occupants evacuated safely and the aircraft was damaged beyond repair. At the time of the accident, the runway surface was irregular with potholes and water gouges due to the recent rains.

Crash of a Cessna 208B Grand Caravan in Pukatawagan: 1 killed

Date & Time: Jul 4, 2011 at 1610 LT
Type of aircraft:
Operator:
Registration:
C-FMCB
Flight Phase:
Survivors:
Yes
Schedule:
Pukatawagan - The Pas
MSN:
208B-1114
YOM:
2005
Country:
Crew on board:
1
Crew fatalities:
Pax on board:
8
Pax fatalities:
Other fatalities:
Total fatalities:
1
Captain / Total flying hours:
1900
Captain / Total hours on type:
400.00
Circumstances:
The Beaver Air Services Limited Partnership Cessna 208B (registration C-FMCB serial number 208B1114), operated by its general partner Missinippi Management Ltd (Missinippi Airways), was departing Pukatawagan, Manitoba, for The Pas/Grace Lake Airport, Manitoba. At approximately 1610 Central Daylight Time, the pilot began the takeoff roll from Runway 33. The aircraft did not become fully airborne, and the pilot rejected the takeoff. The pilot applied reverse propeller thrust and braking, but the aircraft departed the end of the runway and continued down an embankment into a ravine. A post-crash fire ensued. One of the passengers was fatally injured; the pilot and the 7 other passengers egressed from the aircraft with minor injuries. The aircraft was destroyed. The emergency locator transmitter did not activate.
Probable cause:
Findings as to Causes and Contributing Factors:
Runway conditions, the pilot's takeoff technique, and possible shifting wind conditions combined to reduce the rate of the aircraft's acceleration during the takeoff roll and prevented it from attaining takeoff airspeed. The pilot rejected the takeoff past the point from which a successful rejected takeoff could be completed within the available stopping distance. The steep drop-off and sharp slope reversal at the end of Runway 33 contributed to the occupant injuries and fuel system damage that in turn caused the fire. This complicated passenger evacuation and prevented the rescue of the injured passenger. The deceased passenger was not wearing the available shoulder harness. This contributed to the serious injuries received as a result of the impact when the aircraft reached the bottom of the ravine and ultimately to his death in the post-impact fire.
Findings as to Risk:
If pilots are not aware of the increased aerodynamic drag during takeoff while using soft-field takeoff techniques they may experience an unexpected reduction in takeoff performance. Incomplete passenger briefings or inattentive passengers increase the risk that they will be unable to carry out critical egress procedures during an aircraft evacuation. When data recordings are not available to an investigation, this may preclude the identification and communication of safety deficiencies to advance transportation safety. Although the runway at Pukatawagan and many other aerodromes are compliant with Aerodrome Standards and Recommended Practices (TP 312E), the topography of the terrain beyond the runway ends may increase the likelihood of damage to aircraft and injuries to crew and passengers in the event of an aircraft overrunning or landing short. TC's responses to TSB recommendations for action to reduce the risk of post-impact fires have been rated as Unsatisfactory. As a result, there is a continuing risk of post-impact fires in impact-survivable accidents involving these aircraft. The lack of accelerate stop distance information for aircraft impedes the crew's ability to plan the takeoff-reject point accurately.
Other finding:
Several anomalies were found in the engine's power control hardware. There was no indication that these anomalies contributed to the occurrence.
Final Report:

Crash of a De Havilland DHC-2 Beaver near Buss Lakes: 5 killed

Date & Time: Jun 30, 2011 at 1111 LT
Type of aircraft:
Registration:
C-GUJX
Flight Phase:
Survivors:
No
Schedule:
Buss Lakes - Southend
MSN:
1132
YOM:
1958
Country:
Crew on board:
1
Crew fatalities:
Pax on board:
4
Pax fatalities:
Other fatalities:
Total fatalities:
5
Captain / Total flying hours:
4023
Captain / Total hours on type:
3664.00
Aircraft flight hours:
12746
Circumstances:
The Lawrence Bay Airways Ltd. float-equipped de Havilland DHC-2 (registration C-GUJX, serial number 1132) departed from a lake adjacent to a remote fishing cabin near Buss Lakes for a day visual flight rules flight to Southend, Saskatchewan, about 37 nautical miles (nm) southeast. There were 4 passengers and 1 pilot onboard. The aircraft crashed along the shoreline of another lake located about 2 nm southeast of its point of departure. The impact was severe and the 5 occupants were killed on impact. The emergency locator transmitter activated, and the aircraft was found partially submerged in shallow water with the right wing tip resting on the shore. There was no post-crash fire. The accident occurred during daylight hours at about 1111 Central Standard Time.
Probable cause:
Findings as to Causes and Contributing Factors:
While manoeuvring at low level, the aircraft's critical angle of attack was likely exceeded and the aircraft stalled. The stall occurred at an altitude from which recovery was not possible.
Other Findings:
The separation of the propeller blade tip likely resulted from impact forces.
The investigation could not determine whether the fuel pressure warning light was illuminated prior to the accident.
Final Report:

Crash of a Dassault Falcon 10 in Toronto

Date & Time: Jun 17, 2011 at 1506 LT
Type of aircraft:
Operator:
Registration:
C-GRIS
Flight Type:
Survivors:
Yes
Schedule:
Toronto-Lester Bowles Pearson - Toronto-Buttonville
MSN:
02
YOM:
1973
Country:
Crew on board:
2
Crew fatalities:
Pax on board:
0
Pax fatalities:
Other fatalities:
Total fatalities:
0
Captain / Total flying hours:
12000
Captain / Total hours on type:
4000.00
Copilot / Total flying hours:
7100
Copilot / Total hours on type:
475
Aircraft flight hours:
12697
Circumstances:
Aircraft was on a flight from Toronto-Lester B. Pearson International Airport to Toronto-Buttonville Municipal Airport, Ontario, with 2 pilots on board. Air traffic control cleared the aircraft for a contact approach to Runway 33. During the left turn on to final, the aircraft overshot the runway centerline. The pilot then compensated with a tight turn to the right to line up with the runway heading and touched down just beyond the threshold markings. Immediately after touchdown, the aircraft exited the runway to the right, and continued through the infield and the adjacent taxiway Bravo, striking a runway/taxiway identification sign, but avoiding aircraft that were parked on the apron. The aircraft came to a stop on the infield before Runway 21/03. The aircraft remained upright, and the landing gear did not collapse. The aircraft sustained substantial damage. There was no fire, and the flight crew was not injured. The Toronto-Buttonville tower controller observed the event as it progressed and immediately called for emergency vehicles from the nearby municipality. The accident occurred at 1506 Eastern Daylight Time.
Probable cause:
Findings as to Causes and Contributing Factors:
1. The crew flew an unstabilized approach with excessive airspeed.
2. The lack of adherence to company standard operating procedures and crew resource management, as well as the non-completion of checklist items by the flight crew contributed to the occurrence.
3. The captain’s commitment to landing or lack of understanding of the degree of instability of the flight path likely influenced the decision not to follow the aural GPWS alerts and the missed approach call from the first officer.
4. The non-standard wording and the tone used by the first officer were insufficient to deter the captain from continuing the approach.
5. At touchdown, directional control was lost, and the aircraft veered off the runway with sufficient speed to prevent any attempts to regain control.
Finding as to Risk
1. Companies which do not have ground proximity warning system procedures in their standard operating procedures may place crews and passengers at risk in the event that a warning is received.
Final Report:

Crash of a Casa 212 Aviocar in Saskatoon: 1 killed

Date & Time: Apr 1, 2011 at 1830 LT
Type of aircraft:
Operator:
Registration:
C-FDKM
Survivors:
Yes
Site:
Schedule:
Saskatoon - Saskatoon
MSN:
196
YOM:
1981
Country:
Crew on board:
3
Crew fatalities:
Pax on board:
0
Pax fatalities:
Other fatalities:
Total fatalities:
1
Captain / Total flying hours:
7400
Captain / Total hours on type:
75.00
Copilot / Total flying hours:
7800
Copilot / Total hours on type:
1800
Aircraft flight hours:
21292
Circumstances:
At 1503 Central Standard Time, the Construcciones Aeronauticas SA (CASA) C-212-CC40 (registration C-FDKM, serial number 196) operated by Fugro Aviation Canada Ltd., departed from Saskatoon/Diefenbaker International Airport, Saskatchewan, under visual flight rules for a geophysical survey flight to the east of Saskatoon. On board were 2 pilots and a survey equipment operator. At about 1814, the right engine lost power. The crew shut it down, carried out checklist procedures, and commenced an approach for Runway 27. When the flight was 3.5 nautical miles from the runway on final approach, the left engine lost power. The crew carried out a forced landing adjacent to Wanuskewin Road in Saskatoon. The aircraft impacted a concrete roadway noise abatement wall and was destroyed. The survey equipment operator sustained fatal injuries, the first officer sustained serious injuries, and the captain sustained minor injuries. No ELT signal was received.
Probable cause:
Conclusions
Findings as to Causes and Contributing Factors:
1. The right engine lost power when the intermediate spur gear on the torque sensor shaft failed. This resulted in loss of drive to the high-pressure engine-driven pump, fuel starvation, and immediate engine stoppage.
2. The ability of the left-hand No. 2 ejector pump to deliver fuel to the collector tank was compromised by foreign object debris (FOD) in the ejector pump nozzle.
3. When the fuel level in the left collector tank decreased, the left fuel level warning light likely illuminated but was not noticed by the crew.
4. The pilots did not execute the fuel level warning checklist because they did not perceive the illumination of the fuel level left tank warning light. Consequently, the fuel crossfeed valve remained closed and fuel from only the left wing was being supplied to the left engine.
5. The left engine flamed out as a result of depletion of the collector tank and fuel starvation, and the crew had to make a forced landing resulting in an impact with a concrete noise abatement wall.
Findings as to Risk:
1. Depending on the combination of fuel level and bank angle in single-engine uncoordinated flight, the ejector pump system may not have the delivery capacity, when the No. 1 ejector inlet is exposed, to prevent eventual depletion of the collector tank when the engine is operated at full power. Depletion of the collector tank will result in engine power loss.
2. The master caution annunciator does not flash; this leads to a risk that the the crew may not notice the illumination of an annunciator panel segment, in turn increasing the risk of them not taking action to correct the condition which activated the master caution.
3. When cockpit voice and flight data recordings are not available to an investigation, this may preclude the identification and communication of safety deficiencies to advance transportation safety.
4. Because the inlets of the ejector pumps are unscreened, there is a risk that FOD in the fuel tank may become lodged in an ejector nozzle and result in a decrease in the fuel delivery rate to the collector tank.
Other Findings:
1. The crew’s decision not to recover or jettison the birds immediately resulted in operation for an extended period with minimal climb performance.
2. The composition and origin of the FOD, as well as how or when it had been introduced into the fuel tank, could not be determined.
3. The SkyTrac system provided timely position information that would have assisted search and rescue personnel if position data had been required.
4. Saskatoon police, firefighters, and paramedics responded rapidly to the accident and provided effective assistance to the survivors.
Final Report:

Crash of a De Havilland DHC-3 Otter in Mayo: 1 killed

Date & Time: Mar 31, 2011 at 1507 LT
Type of aircraft:
Operator:
Registration:
C-GMCW
Flight Phase:
Flight Type:
Survivors:
No
Site:
Schedule:
Mayo - Rackla
MSN:
108
YOM:
1956
Location:
Country:
Crew on board:
1
Crew fatalities:
Pax on board:
0
Pax fatalities:
Other fatalities:
Total fatalities:
1
Captain / Total flying hours:
5000
Captain / Total hours on type:
3000.00
Aircraft flight hours:
16431
Circumstances:
The aircraft was being utilized in support of mineral exploration activities, to transport building materials, fuel, and winter camp supplies from Mayo, Yukon, to winter airstrips located at Withers Lake and Rackla River, Yukon. Withers Lake is located 113 statute miles (sm) east of Mayo, and Rackla Airstrip is located 94 sm northeast of Mayo (Appendix B). On the accident flight, the aircraft was transporting a load of twelve 6-inch by 6-inch wood timbers, each 16 feet long, and 2 barrels of jet fuel. The pilot had arrived at the Mayo Airport at about 0630 1 on the morning of the accident. The pilot’s first trip of the day was to Withers Lake, departing Mayo at 0834. The pilot completed 2 trips to Withers Lake and 1 trip to Rackla prior to the accident flight. The accident flight departed Mayo at 1448 under visual flight rules (VFR) on a company itinerary. At 1507 the Canadian Mission Control Centre (CMCC) received a 406-MHz emergency locater transmitter (ELT) alert. Joint Rescue Co-ordination Centre Victoria (JRCC Victoria) was notified at 1522. Aircraft operating in the area were alerted, and a commercial helicopter was dispatched from Ross River, Yukon, approximately 1 hour later to search for the aircraft. The helicopter crew located the aircraft wreckage at 1833 at about 4300 feet above sea level (asl), on a remote, snow-covered hillside 38 nautical miles (nm) northeast of Mayo.
Probable cause:
The aircraft departed controlled flight for reasons which could not be determined, and broke up due to high speed.
Final Report:

Crash of a Piper PA-61 Aerostar (Ted Smith 601) in Falaise Lake

Date & Time: Dec 22, 2010 at 1350 LT
Operator:
Registration:
C-FMLI
Flight Phase:
Flight Type:
Survivors:
Yes
Schedule:
Yellowknife – Fort Saint John
MSN:
61-0589-7963259
YOM:
1979
Country:
Crew on board:
1
Crew fatalities:
Pax on board:
0
Pax fatalities:
Other fatalities:
Total fatalities:
0
Circumstances:
The twin engine aircraft was en route from Yellowknife, NT to Fort St. John, BC. The pilot noticed fumes and smoke coming from behind the rear cabin wall. The cabin was depressurized and the door opened to clear the smoke. A forced landing was conducted onto the frozen surface of Falaise Lake, NT. The pilot immediately egressed, however, the aircraft was soon engulfed in flames and was completely consumed. The pilot was not injured and was flown out by helicopter.

Crash of a Beechcraft 100 King Air in Kirby Lake: 1 killed

Date & Time: Oct 25, 2010 at 1120 LT
Type of aircraft:
Operator:
Registration:
C-FAFD
Survivors:
Yes
Schedule:
Calgary - Edmonton - Kirby Lake
MSN:
B-42
YOM:
1970
Flight number:
KBA103
Country:
Crew on board:
2
Crew fatalities:
Pax on board:
8
Pax fatalities:
Other fatalities:
Total fatalities:
1
Circumstances:
The aircraft was on an instrument flight rules flight from the Edmonton City Centre Airport to Kirby Lake, Alberta. At approximately 1114 Mountain Daylight Time, during the approach to Runway 08 at the Kirby Lake Airport, the aircraft struck the ground, 174 feet short of the threshold. The aircraft bounced and came to rest off the edge of the runway. There were 2 flight crew members and 8 passengers on board. The captain sustained fatal injuries. Four occupants, including the co-pilot, sustained serious injuries. The 5 remaining passengers received minor injuries. The aircraft was substantially damaged. A small, post-impact, electrical fire in the cockpit was extinguished by survivors and first responders. The emergency locator transmitter was activated on impact. All passengers were BP employees.
Probable cause:
Findings as to Causes and Contributing Factors:
1. The conduct of the flight crew members during the instrument approach prevented them from effectively monitoring the performance of the aircraft.
2. During the descent below the minimum descent altitude, the airspeed reduced to a point where the aircraft experienced an aerodynamic stall and loss of control. There was insufficient altitude to effect recovery prior to ground impact.
3. For unknown reasons, the stall warning horn did not activate; this may have provided the crew with an opportunity to avoid the impending stall.
Findings as to Risk:
1. The use of company standard weights and a non-current aircraft weight and balance report resulted in the flight departing at an inaccurate weight. This could result in a performance regime that may not be anticipated by the pilot.
2. Flying an instrument approach using a navigational display that is outside the normal scan of the pilot increases the workload during a critical phase of flight.
3. Flying an abbreviated approach profile without applying the proper transition altitudes increases the risk of controlled flight into obstacles or terrain.
4. Not applying cold temperature correction values to the approach altitudes decreases the built-in obstacle clearance parameters of an instrument approach.
Final Report:

Crash of a Beechcraft B100 King Air in Montmagny

Date & Time: Sep 22, 2010 at 1700 LT
Type of aircraft:
Operator:
Registration:
C-FSIK
Flight Phase:
Survivors:
Yes
Schedule:
Montmagny - Montreal
MSN:
BE-39
YOM:
1978
Country:
Crew on board:
2
Crew fatalities:
Pax on board:
4
Pax fatalities:
Other fatalities:
Total fatalities:
0
Captain / Total flying hours:
4500
Captain / Total hours on type:
2500.00
Copilot / Total flying hours:
7800
Copilot / Total hours on type:
675
Circumstances:
The aircraft was operating as flight MAX100 on an instrument flight rules flight from Montmagny to Montreal/St-Hubert, Quebec, with 2 pilots and 4 passengers on board. At approximately 1700 Eastern Daylight Time, the aircraft moved into position on the threshold of 3010-foot-long runway 26 and initiated the take-off. On the rotation, at approximately 100 knots, the flight crew saw numerous birds in the last quarter of the runway. While getting airborne, the aircraft struck the birds and the left engine lost power, causing the aircraft to yaw and roll to the left. The aircraft lost altitude and touched the runway to the left of the centre line and less than 100 feet from the runway end. The take-off was aborted and the aircraft overran the runway, coming to rest in a field 885 feet from the runway end. All occupants evacuated the aircraft via the main door. There were no injuries. The aircraft was substantially damaged.
Probable cause:
Findings As To Causes and Contributing Factors:
The bird strike occurred on take-off at an altitude of less than 50 feet. Gulls were ingested in the left engine, which then lost power.
After the loss of engine power, the flight crew had difficulty controlling the aircraft. The aircraft touched the ground, forcing the pilot flying to abort the take-off when the runway remaining was insufficient to stop the aircraft, resulting in the runway overrun.
Findings As To Risks:
Although a cannon was in place, it was not working on the day of the accident, which increased the risk of a bird strike.
The presence of a goose and duck farm outside the airport perimeter but near a runway increases the risk of attracting gulls.
Operators subject to Canadian Aviation Regulations Subpart 703 are not prohibited from having an aircraft take off from a runway that is shorter than the accelerate-stop distance of that aircraft as determined from the performance diagrams. Consequently, travellers carried by these operators are exposed to the risks associated with a runway overrun when a take-off is aborted.
The absence of a CVR makes it harder to ascertain material facts. Consequently, investigations can take more time, resulting in delays which compromise public safety.
Final Report: